
Blacktie Documentation
Release 0.2.1.2

Augustine Dunn

July 21, 2013





CONTENTS

1 Project Summary 3
1.1 I want to collaborate with you! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Introducing Blacktie: a simpler way to do RNA-seq using Tophat, Cufflinks, and CummeRbund . . . 3
1.3 Getting the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Issue tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Blacktie Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Installation 5
2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Installing the latest version from the git repository . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Use pip to obtain the package from PyPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Installing without using git or pip for the download . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Test to see whether the install worked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Getting started 7
3.1 The –prog option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 The –hide-logs option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 The –modes option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 The configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Using e-mail notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Tutorial 15

5 Blacktie Auto-Generated Code Documentation 17
5.1 calls.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 errors.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 externals.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 misc.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Indices and tables 25

Python Module Index 27

i



ii



Blacktie Documentation, Release 0.2.1.2

Contents:

CONTENTS 1



Blacktie Documentation, Release 0.2.1.2

2 CONTENTS



CHAPTER

ONE

PROJECT SUMMARY

1.1 I want to collaborate with you!

Contact me at wadunn83@gmail.com if you are a Python coder and want to or already have made improvements on
this code.

1.2 Introducing Blacktie: a simpler way to do RNA-seq using Tophat,
Cufflinks, and CummeRbund

Leveraging multiple fastQ files full of RNA-seq reads into a coherent picture of gene expression and transcript models
is a multi-step process. It requires the organization and coordination of many files of different types through many
different program calls and output steps. Each step might take hours or days depending on your input data. Then, as
you are writing up your work, sometimes weeks/months later, you see that a new version of the programs you use has
come out. Do you need to re-run your analysis? What settings DID you use back then?

The Tophat/Cufflinks/CummeRbund group of programs makes quality RNA-seq analysis doable once you understand
the process. But what about when its time for you to leave the lab and you need to “train” someone else to repeat your
process? It can be a nightmare. Especially if the trainee is not yet comfortable with the command line.

This is why I wrote the Blacktie pipeline software. Its goals are to streamline and simplify the complex task of
analyzing full RNA-seq experiments using these programs; to automatically record settings used and program output
messages in a way that users can track them to data later; provide a base set of functions and classes that will allow
users to create custom pipelines easily by editing a single file (or if they want: writing their own custom scripts).

1.2.1 Some of Blacktie’s features include:

• simple installation

• simple command line interface that allows almost ANYBODY to fully automate and reliably repeat their analysis
of RNA-seq data with Tophat/Cufflinks/CummeRbund

• send email updates to the user

• intelligently continue with the analysis if a single run fails

• run multiple, complex tophat/cufflinks experiments at once using a single command

• generates SGE qsub-able scripts for use with a computing cluster

• checks for R installation

• checks for cummeRbund library and walks user through installation if its not installed yet

3

mailto:wadunn83@gmail.com


Blacktie Documentation, Release 0.2.1.2

• automatic preliminary CummeRbund Quality Control, Basic Differential Expression, and Basic Pattern Discov-
ery plots using CummeRbund

Dedicated bioinformatics personnel can be few and far between. Blacktie aims to bring automated, reproducible RNA-
seq with built-in record keeping to more labs so that your valuable data does not fester on your servers, and you can
publish sooner.

1.3 Getting the code

The code is available from the Python Package Index or from its homepage: https://github.com/xguse/blacktie

Visit Installation for more detailed instructions on getting and building the package.

1.4 Issue tracking

If you find issues, bugs, or have feature requests, please go here to submit them:
https://github.com/xguse/blacktie/issues

1.5 Blacktie Poster

To credit the use of blacktie please cite the poster using the DOI link provided.

Introducing Blacktie: a simpler way to do RNA-seq using Tophat/Cufflinks/CummeRbund. Augustine
Dunn. figshare. http://dx.doi.org/10.6084/m9.figshare.714149

4 Chapter 1. Project Summary

https://pypi.python.org/pypi
https://github.com/xguse/blacktie
https://github.com/xguse/blacktie/issues
http://dx.doi.org/10.6084/m9.figshare.714149


CHAPTER

TWO

INSTALLATION

2.1 Requirements

The following python modules must be installed for blacktie to function properly:

Mako>=0.7.3
PyYAML>=3.10

The following modules will provide useful but optional functionality:

pprocess>=0.5
rpy2

2.2 Installing the latest version from the git repository

Note: Git is a very useful tool to have installed and to know how to use. Learn more here and try it out here.

Clone the repo:

$ git clone git://github.com/xguse/blacktie.git

Install with any unmet requirements using pip:

$ [sudo] pip install -r blacktie/requirements.txt blacktie

Install using standard setup.py script:

$ cd blacktie
$ [sudo] python setup.py install

2.3 Use pip to obtain the package from PyPI

$ [sudo] pip install blacktie Mako PyYAML pprocess

5

http://git-scm.com/
http://try.github.com/


Blacktie Documentation, Release 0.2.1.2

2.4 Installing without using git or pip for the download

After installing the requirements:

$ wget https://github.com/xguse/blacktie/archive/master.zip
$ unzip master.zip
$ cd blacktie-master
$ [sudo] python setup.py install

2.5 Test to see whether the install worked

To test whether your installation was successful, open a new terminal session and type the following command.

$ blacktie

You should see the help text for blacktie and it should look something like this:

usage: blacktie [-h] [--version]
[--prog {tophat,cufflinks,cuffmerge,cuffdiff,cummerbund,all}]
[--hide-logs] [--no-email]
[--mode {analyze,dry_run,qsub_script}]
config_file

This script reads options from a yaml formatted file and organizes the
execution of tophat/cufflinks runs for multiple condition sets.

positional arguments:
config_file Path to a yaml formatted config file containing setup

options for the runs.

optional arguments:
-h, --help show this help message and exit
--version Print version number.
--prog {tophat,cufflinks,cuffmerge,cuffdiff,cummerbund,all}

Which program do you want to run? (default: tophat)
--hide-logs Make your log directories hidden to keep a tidy

’looking’ base directory. (default: False)
--no-email Don’t send email notifications. (default: False)
--mode {analyze,dry_run,qsub_script}

1) ’analyze’: run the analysis pipeline. 2) ’dry_run’:
walk through all steps that would be run and print out
the command lines; however, do not send the commands
to the system to be run. 3) ’qsub_script’: generate
bash scripts suitable to be sent to a compute
cluster’s SGE through the qsub command. (default:
analyze)

If this worked, great!

6 Chapter 2. Installation



CHAPTER

THREE

GETTING STARTED

Note: Make sure that you have successfully installed the blacktie module before trying the activities below.

To test whether your installation was successful, open a new terminal session and type the following command.

$ blacktie

You should see the help text for blacktie and it should look something like this:

$ blacktie

usage: blacktie [-h] [--version]
[--prog {tophat,cufflinks,cuffmerge,cuffdiff,all}]
[--hide-logs] [--no-email]
[--mode {analyze,dry_run,qsub_script}]
config_file

This script reads options from a yaml formatted file and organizes the
execution of tophat/cufflinks runs for multiple condition sets.

positional arguments:
config_file Path to a yaml formatted config file containing setup

options for the runs.

optional arguments:
-h, --help show this help message and exit
--version Print version number.
--prog {tophat,cufflinks,cuffmerge,cuffdiff,all}

Which program do you want to run? (default: tophat)
--hide-logs Make your log directories hidden to keep a tidy

’looking’ base directory. (default: False)
--no-email Don’t send email notifications. (default: False)
--mode {analyze,dry_run,qsub_script}

1) ’analyze’: run the analysis pipeline. 2) ’dry_run’:
walk through all steps that would be run and print out
the command lines; however, do not send the commands
to the system to be run. 3) ’qsub_script’: generate
bash scripts suitable to be sent to a compute
cluster’s SGE through the qsub command. (default:
analyze)

If this worked, great! Let’s move on to what all that means.

7



Blacktie Documentation, Release 0.2.1.2

3.1 The –prog option

This tells blacktie which part of the pipeline you would like to run. Any part can be run individually as long as the
correct files exist. You can also run the whole thing from tophat to cuffdiff in one fell swoop if you like!

3.2 The –hide-logs option

This names your log files so that they are hidden in “*nix” systems.

3.3 The –modes option

blacktie can run in three modes. The first, analyze, actually runs the pipeline and does the analyses. However,
it can be useful to simply view what WOULD be done to make sure that ‘blacktie is producing command line
calls that match what you expected. For this, use the dry_run mode.

Further, if you are working on a compute cluster running something like a “Sun Grid Engine” (SGE) to which you
must submit jobs using qsub, it may not be a good idea to submit a job running all of blacktie as a single qsub
job. For this it can be helpful to have blacktie write all of your qsub scripts for you based on a template. Each
bash script represents a single program call to the tophat/cufflinks suite.

Note: A starter template for SGE submission can be found here: blacktie/examples/qsub.template. You
will want to become familiar with how Mako processes templates if you plan to customize this much.

Here is what the starter template looks like:

1 #!/bin/bash
2 #$ -S /bin/bash # Use a real BASH shell on the worker node
3 #$ -q ${queues} # What queues do you want to submit to
4 #$ -M ${email_addy} # Send email updates to this address
5 #$ -m beas # When to send an email update
6 #$ -e /data/users/dunnw/logs/${call_id}.e # Write standard error to this file
7 #$ -o /data/users/dunnw/logs/${call_id}.o # Write standard out to this file
8 #$ -N ${job_name} # Name my job this
9 #$ -R y # Reserve cores for me until there are the number I asked for

10 #$ -pe openmp ${core_range} # Use openmp for multiprocessor use and give me core_range cores
11

12 LD_LIBRARY_PATH="${ld_library_path}$${}{LD_LIBRARY_PATH}" # Make sure worker’s LD_LIBRARY_PATH contains ld_library_path
13

14

15 # HPC clusters frequently use a module system to provide system wide access to
16 # certain programs. The following makes sure that the tools needed are loaded
17 # for **MY** cluster. You will need alter this to make sure your cluster is set up
18 # based on its system.
19

20 module load bowtie2/2.0.2
21 module load tophat/2.0.6
22 module load cufflinks/2.0.2
23 module load samtools/0.1.18
24

25

26 # basic staging stuff
27 DATAHOME="${datahome}"

8 Chapter 3. Getting started

http://en.wikipedia.org/wiki/Oracle_Grid_Engine
https://wikis.utexas.edu/display/CCBB/sge-tutorial
http://www.makotemplates.org/


Blacktie Documentation, Release 0.2.1.2

28 MYSCRATCH="/scratch/$${}{USER}"
29

30

31 mkdir -p $MYSCRATCH
32 cd $MYSCRATCH
33

34

35 # Remind me what will be done
36 echo ’’
37 echo "${cmd_str}"
38 echo ’’
39

40 # Run my job
41 ${cmd_str}
42

43

44 # Pack up results and send it home to log-in node
45 tar -zcvf ${call_id}.tar.gz ${out_dir}
46 cp ${call_id}.tar.gz $${}{DATAHOME}/
47

48 # Back into the shadows
49 cd $HOME
50 rm -rf $MYSCRATCH

3.4 The configuration file

The configuration file is a YAML-based document that is where we will store all of the complexity of the options,
input and output files of the typical tophat/cufflinks workflow. This way we have though about what we want to do
with our RNA-seq data from start to finish before we actually start the analysis. Also, this config file acts as a check on
our poor memory. If you get strange results you don’t have to worry about whether you entered the samples backwards
since you can go back to this config file and see exactly what files and settings were used.

Note: If you are running blacktie in analyze mode, you will have many more files created that document every
step of the process where the output files are actually placed as well as central log files.

Here is a dummy example of a config file:

Note: A copy of this file can be found here: blacktie/examples/blacktie_config_example.yaml

1 # The document starts after the ’---’
2

3 # By the way: everything after a ’#’ on a line
4 # will be ignored by the program and acts as a
5 # comment or note to explain things.
6

7 ---
8 # run_options is a dictionary that contains variables that will be needed for
9 # many or all stages of the run

10 run_options:
11 base_dir: /path/to/project/base_dir
12 run_id: False # name your run: if false; uses current date/time for uniqe run_id everytime
13 bowtie_indexes_dir: /path/to/bowtie2_indexes
14 email_info:

3.4. The configuration file 9

http://en.wikipedia.org/wiki/YAML


Blacktie Documentation, Release 0.2.1.2

15 sender: from_me@gmail.com
16 to: to_you@email.com
17 li: /path/to/file/containing/base64_encoded/login_info # base64_encoded pswrd for from_me@email.com
18 custom_smtp:
19 host: smtp.gmail.com # or what ever your email smtp server is
20 port: 587 # or which ever port your smtp server uses
21

22

23

24 # ‘tophat_options‘:
25 # -----------------
26 # This is a dictionary that contains variables needed for all the tophat runs.
27 # The names of the key:value combinations are taken directly from the tophat
28 # option names but have the leading ’-’ removed.
29

30 # -o becomes o; --library-type becomes library-type
31

32 # **This is true for the cufflinks, cuffmerge, cuffdiff option dictionaries.**
33

34 # ‘from_conditions‘:
35 # ------------------
36 # This is a special value that tells blacktie that you don’t want to name a single
37 # value for this option but would rather set the value individually for each of
38 # your samples/conditions. If you set the ‘o‘ value here:
39

40 # **all of your different sample results would
41 # be written to the same output directory and
42 # each would overwrite the next!**
43 # Hence: from_conditions
44

45 # However if you made all of your libraries the same way, things like ‘r‘ and
46 # ‘mate-std-dev‘ can be set here to avoid writing the same values over and over
47 # and perhaps making a mistake or two.
48

49 # ‘positional_args‘:
50 # ------------------
51 # This is a dictionary inside of the ‘tophat_options‘ dictionary.
52 # It is where you put the arguments to tophat that do not have ’flags’ to make
53 # their identity explicit like ‘-o path/to/output_dir‘ or ‘--library-type fr-unstranded‘
54

55 # For tophat, these values are
56 # [1] the bowtie index name
57 # [2] the fastq files containing the left_reads
58 # [3] the fastq files containing the right_reads
59

60 # They will be different for cufflinks, cuffmerge, cuffdiff so consult the
61 # respective help text or manuals, but you should be fine if you just use what
62 # I have set up in this file already.
63

64 tophat_options:
65 o: from_conditions
66 library-type: fr-unstranded
67 p: 6
68 r: 125
69 mate-std-dev: 25
70 G: from_conditions
71 no-coverage-search: True
72 positional_args:

10 Chapter 3. Getting started



Blacktie Documentation, Release 0.2.1.2

73 bowtie2_index: from_conditions
74 left_reads: from_conditions
75 right_reads: from_conditions
76

77 cufflinks_options:
78 o: from_conditions
79 p: 7
80 GTF-guide: from_conditions # If you want to use annotation as *TRUTH* set this to False and set ’GTF’ to ’from_conditions’
81 GTF: False # if an option set to false, it will be ommited from the command string
82 3-overhang-tolerance: 5000
83 frag-bias-correct: from_conditions
84 multi-read-correct: True
85 upper-quartile-norm: True
86 positional_args:
87 accepted_hits: from_conditions
88

89 cuffmerge_options:
90 o: from_conditions # output directory
91 ref-gtf: from_conditions
92 p: 6
93 ref-sequence: from_conditions
94 positional_args:
95 assembly_list: from_conditions # file with path to cufflinks gtf files to be merged
96

97 cuffdiff_options:
98 o: from_conditions
99 labels: from_conditions

100 p: 6
101 time-series: True
102 upper-quartile-norm: True
103 frag-bias-correct: from_conditions
104 multi-read-correct: True
105 positional_args:
106 transcripts_gtf: from_conditions
107 sample_bams: from_conditions
108

109

110 cummerbund_options:
111 cuffdiff-dir: from_conditions
112 gtf-path: from_conditions
113 out: from_conditions
114 file-type: pdf
115

116

117 # options for --mode qsub_script
118 # If you are not using --mode qsub_script, then set all to ’None’
119 qsub_options:
120 queues: ’queue1,queue3,queue5’
121 datahome: ’/path/to/baseDirectory/on/cluster/’
122 core_range: 40-64 # how many cpus do you want
123 ld_library_path: ’’ # leave this blank unless you know what it is and need it
124 template: /path/to/your/altered/version/of/qsub.template
125

126

127 # ‘condition_queue‘:
128 # ------------------
129 # This is a list of info related to each sample/condition contained in your RNA-sequence
130 # experiment(s)

3.4. The configuration file 11



Blacktie Documentation, Release 0.2.1.2

131

132 # ‘name‘: the name of this condition program. Usually something like a time-point
133 # ID or treatment type. Should be as short as possible while still being a useful label.
134

135 # ‘experiment_id‘: this is how you group different experiments to be included in a
136 # single cuffmerge/cuffdiff program call. All conditions in a time
137 # series should share the same ‘experiment_id‘ and be placed in
138 # ‘condition_queue‘ in the order that you want them to be sent to
139 # cuffdiff.
140

141 # ‘replicate_id‘: this is how you group data for biological replicates of a single
142 # experimental condition experiments to be included in a cuffdiff program
143 # call. Each replicate of a condition should have a unique ‘experiment_id‘.
144

145 # ‘left_reads‘: a list of the paths to fastq files containing left reads for
146 # each condition.
147

148 # ‘right_reads‘: list of fastqs containing the right mates for the fastqs in
149 # ‘left_reads‘.
150 # **NOTE** right mate file must be in same order as provided to ‘left_reads‘
151

152 condition_queue:
153 -
154 name: exp1_control
155 experiment_id: 0
156 replicate_id: 0
157 left_reads:
158 - /path/to/exp1_control/techRep1.left_reads.fastq
159 - /path/to/exp1_control/techRep2.left_reads.fastq
160 right_reads:
161 - /path/to/exp1_control/techRep1.right_reads.fastq
162 - /path/to/exp1_control/techRep2.right_reads.fastq
163 genome_seq: /path/to/species/genome.fa
164 gtf_annotation: /path/to/species/annotation.gtf
165 bowtie2_index: species.bowtie2_index.basename
166

167 -
168 name: exp1_control
169 experiment_id: 0
170 replicate_id: 1
171 left_reads:
172 - /path/to/exp1_control/techRep1.left_reads.fastq
173 - /path/to/exp1_control/techRep2.left_reads.fastq
174 right_reads:
175 - /path/to/exp1_control/techRep1.right_reads.fastq
176 - /path/to/exp1_control/techRep2.right_reads.fastq
177 genome_seq: /path/to/species/genome.fa
178 gtf_annotation: /path/to/species/annotation.gtf
179 bowtie2_index: species.bowtie2_index.basename
180

181 -
182 name: exp1_treatment
183 experiment_id: 0
184 replicate_id: 0
185 left_reads:
186 - /path/to/exp1_treatment/techRep1.left_reads.fastq
187 - /path/to/exp1_treatment/techRep2.left_reads.fastq
188 right_reads:

12 Chapter 3. Getting started



Blacktie Documentation, Release 0.2.1.2

189 - /path/to/exp1_treatment/techRep1.right_reads.fastq
190 - /path/to/exp1_treatment/techRep2.right_reads.fastq
191 genome_seq: /path/to/species/genome.fa
192 gtf_annotation: /path/to/species/annotation.gtf
193 bowtie2_index: species.bowtie2_index.basename
194

195 -
196 name: exp2_control
197 experiment_id: 1
198 replicate_id: 0
199 left_reads:
200 - /path/to/exp2_control/techRep1.left_reads.fastq
201 - /path/to/exp2_control/techRep2.left_reads.fastq
202 right_reads:
203 - /path/to/exp2_control/techRep1.right_reads.fastq
204 - /path/to/exp2_control/techRep2.right_reads.fastq
205 genome_seq: /path/to/species/genome.fa
206 gtf_annotation: /path/to/species/annotation.gtf
207 bowtie2_index: species.bowtie2_index.basename
208

209 -
210 name: exp2_treatment
211 experiment_id: 1
212 replicate_id: 0
213 left_reads:
214 - /path/to/exp2_treatment/techRep1.left_reads.fastq
215 - /path/to/exp2_treatment/techRep2.left_reads.fastq
216 right_reads:
217 - /path/to/exp2_treatment/techRep1.right_reads.fastq
218 - /path/to/exp2_treatment/techRep2.right_reads.fastq
219 genome_seq: /path/to/species/genome.fa
220 gtf_annotation: /path/to/species/annotation.gtf
221 bowtie2_index: species.bowtie2_index.basename
222

223

224 ...

Todo

Add the slots for custom email server options.

3.5 Using e-mail notifications

Changed in version v0.2.0rc1: any smtp server should now be usable if you code the host and port into the
yaml config file. Any email can be used as the recipient.New in version v0.2.0rc1: added --no-email option.

Warning: gmail’s 2-step authentication will NOT work. Sorry. I will look into how to deal with that eventually.

You will need to provide your password in order to use the email notifications but it is not a good idea to store human
readable passwords lying around your system. So the file that is used to store your password must contain a version
of your password that has been encoded in base64. This will scramble your password beyond most people’s ability to
read it as a password as long as you don’t name it something silly like password_file.txt.

The help text for blacktie-encode is:

3.5. Using e-mail notifications 13



Blacktie Documentation, Release 0.2.1.2

$ blacktie-encode -h

usage: blacktie-encode [-h] input_file

This script takes a path to a file where you have placed your password for the
email you want blacktie to use as the "sender" in its notification emails. It
will replace the file with one containing your password once it has encoded it
out of human readable plain-text into seemingly meaningless text. **THIS IS
NOT FOOLPROOF:** If someone knows exactly what to look for they might figure
it out. ALWAYS use good password practices and never use the same password for
multiple important accounts!

positional arguments:
input_file Path to a file where you have placed your password for the email

you want blacktie to use as the "sender" in its notification
emails.

optional arguments:
-h, --help show this help message and exit

14 Chapter 3. Getting started



CHAPTER

FOUR

TUTORIAL

A more detailed tutorial is under development, so watch this space!

15



Blacktie Documentation, Release 0.2.1.2

16 Chapter 4. Tutorial



CHAPTER

FIVE

BLACKTIE AUTO-GENERATED CODE
DOCUMENTATION

Todo

DONE Convert docstring style from (given,does,returns) to (:param a: format)

5.1 calls.py

Code defining classes to represent and excute pipeline program calls.

class blacktie.utils.calls.BaseCall(yargs, email_info, run_id, run_logs, conditions,
mode=’analyze’)

Defines common methods for all program call types.

__init__(yargs, email_info, run_id, run_logs, conditions, mode=’analyze’)
initializes a BaseCall object

Parameters

• yargs – argument tree generated by parsing the yaml config file

• email_info – Bunch() object containing keys: email_from, email_to, email_li

• run_id – id for the whole set of calls

• run_logs – the directory where log file should be put

• conditions – one or a list of condition-dictionaries from yargs.condition_queue

• mode – choices = [’analyze’,’dry_run’,’qsub_script’]

Returns an initialized BaseCall object

_flag_out_dir()
renames out directory, prepending ‘FAILED’ flag: equivalent of mv tophat_Aa0
FAILED.tophat_Aa0

build_out_dir_path()
builds correct out_dir path based on state of self

Returns out_dir

17



Blacktie Documentation, Release 0.2.1.2

build_qsub()
Builds and writes this CallObject’s qsub script to current working directory using options provided under
the “qsub_options” sub-tree in the yaml config file.

construct_options_list()
converts opt_dict into list encoding proper options to send to the current program: saves to self.

execute()
calls correct program, records results, and manages errors

get_condition_id(condition_dict)
Constructs condition ID :param condition_dict: a dictionary containing consition info like name, repli-
cate_id, etc. :returns: an ID used to construct the call_id of a call.

init_log_file()
creates empty log file for this call and stores its path in self.log_file

init_opt_dict()
builds a dict with non-job-specific values set and job-specific values set to False based on option names in
the yaml file for this phase

Returns partially populated opt_dict

log_end()
records command string used, program output, and the end of call in self.log_file

log_msg(log_msg=’‘)

•opens self.log_file

•writes log_msg

•closes self.log_file

log_start()
records start of call in self.log_file

notify_end_of_call()
sends notification email informing user that self.call_id has exited

notify_start_of_call()
sends notification email informing user that self.call_id has been initiated

purge_progress_bars(stderr_str)
removes the dynamic progress bars included in some output in case user did not turn them off

set_call_id()
builds and stores this call’s call ID in self.call_id

class blacktie.utils.calls.CuffdiffCall(yargs, email_info, run_id, run_logs, conditions,
mode)

Manage a single call to cuffdiff and store associated run data.

__init__(yargs, email_info, run_id, run_logs, conditions, mode)
initializes the CuffdiffCall object

Parameters

• yargs – argument tree generated by parsing the yaml config file

• email_info – Bunch() object containing keys: email_from, email_to, email_li

• run_id – id for the whole set of calls

• run_logs – the directory where log file should be put

18 Chapter 5. Blacktie Auto-Generated Code Documentation



Blacktie Documentation, Release 0.2.1.2

• conditions – one or a list of condition-dictionaries from yargs.condition_queue

• mode – choices = [’analyze’,’dry_run’,’qsub_script’]

Returns an initialized CuffdiffCall object

get_bam_path(condition)
Supports self.get_sample_bams().

get_cuffmerge_gtf()
Handles yaml_config.cuffdiff_options.positional_args.transcripts_gtf:
from_conditions.

get_genome()
Handles yaml_config.cuffdiff_options.frag-bias-correct: from_conditions.

get_labels()
Handles yaml_config.cuffdiff_options.labels: from_conditions.

get_mask_file()
Handles yaml_config.cuffdiff_options.mask-file: from_conditions.

get_out_dir()
Handles yaml_config.cuffdiff_options.o: from_conditions.

get_sample_bams()
Handles yaml_config.cuffdiff_options.positional_args.sample_bams:
from_conditions.

class blacktie.utils.calls.CufflinksCall(yargs, email_info, run_id, run_logs, conditions,
mode)

Manage a single call to cufflinks and store associated run data.

__init__(yargs, email_info, run_id, run_logs, conditions, mode)
initializes the CufflinksCall object

Parameters

• yargs – argument tree generated by parsing the yaml config file

• email_info – Bunch() object containing keys: email_from, email_to, email_li

• run_id – id for the whole set of calls

• run_logs – the directory where log file should be put

• conditions – one or a list of condition-dictionaries from yargs.condition_queue

• mode – choices = [’analyze’,’dry_run’,’qsub_script’]

Returns an initialized CufflinksCall object

Todo

DONE add support for –GTF in addition to currently supported –GTF-guide

get_accepted_hits()
Handles yaml_config.cufflinks_options.positional_args.accepted_hits:
from_conditions.

get_bam_path()
Supports self.get_accepted_hits().

5.1. calls.py 19



Blacktie Documentation, Release 0.2.1.2

get_genome()
Handles yaml_config.cufflinks_options.frag-bias-correct:
from_conditions.

get_gtf_anno()
Handles yaml_config.cufflinks_options.GTF: from_conditions.

get_gtf_anno_guide()
Handles yaml_config.cufflinks_options.GTF-guide: from_conditions.

get_mask_file()
Handles yaml_config.cufflinks_options.mask-file: from_conditions.

get_out_dir()
Handles yaml_config.cufflinks_options.o: from_conditions.

verify_options()
Makes sure that conflicting options were not imported from yaml config file.

Todo

DONE GTF and GTF-guide should not be used together but both can be ommited

class blacktie.utils.calls.CuffmergeCall(yargs, email_info, run_id, run_logs, conditions,
mode)

Manage a single call to cuffmerge and store associated run data.

__init__(yargs, email_info, run_id, run_logs, conditions, mode)
initializes the CuffmergeCall object

Parameters

• yargs – argument tree generated by parsing the yaml config file

• email_info – Bunch() object containing keys: email_from, email_to, email_li

• run_id – id for the whole set of calls

• run_logs – the directory where log file should be put

• conditions – one or a list of condition-dictionaries from yargs.condition_queue

• mode – choices = [’analyze’,’dry_run’,’qsub_script’]

Returns an initialized CuffmergeCall object

get_cuffGTF_path(condition)
Supports self.get_cufflinks_gtfs().

get_cufflinks_gtfs()
Handles yaml_config.cuffmerge_options.positional_args.assembly_list:
from_conditions.

get_genome()
Handles yaml_config.cuffmerge_options.ref-sequence: from_conditions.

get_gtf_anno()
Handles yaml_config.cuffmerge_options.ref-gtf: from_conditions.

get_out_dir()
Handles yaml_config.cuffmerge_options.o: from_conditions.

20 Chapter 5. Blacktie Auto-Generated Code Documentation



Blacktie Documentation, Release 0.2.1.2

class blacktie.utils.calls.CummerbundCall(yargs, email_info, run_id, run_logs, conditions,
mode)

Manage a single call to blacktie-cummerbund script and store associated run data.

__init__(yargs, email_info, run_id, run_logs, conditions, mode)
initializes the CummerbundCall object

Parameters

• yargs – argument tree generated by parsing the yaml config file

• email_info – Bunch() object containing keys: email_from, email_to, email_li

• run_id – id for the whole set of calls

• run_logs – the directory where log file should be put

• conditions – one or a list of condition-dictionaries from yargs.condition_queue

• mode – choices = [’analyze’,’dry_run’,’qsub_script’]

Returns an initialized CummerbundCall object

get_cuffdiff_dir()
Handles yaml_config.cummerbund_options.cuffdiff-dir: from_conditions.

get_cuffmerge_gtf()
Handles yaml_config.cummerbund_options.gtf-path: from_conditions.

get_out_dir()
Handles yaml_config.cummerbund_options.out: from_conditions.

class blacktie.utils.calls.TophatCall(yargs, email_info, run_id, run_logs, conditions, mode)
Manage a single call to tophat and store associated run data.

__init__(yargs, email_info, run_id, run_logs, conditions, mode)
initializes the TophatCall object

Parameters

• yargs – argument tree generated by parsing the yaml config file

• email_info – Bunch() object containing keys: email_from, email_to, email_li

• run_id – id for the whole set of calls

• run_logs – the directory where log file should be put

• conditions – one or a list of condition-dictionaries from yargs.condition_queue

• mode – choices = [’analyze’,’dry_run’,’qsub_script’]

Returns an initialized TophatCall object

get_bt_idx()
Handles yaml_config.tophat_options.positional_args.bowtie2_index:
from_conditions.

get_gtf_anno()
Handles yaml_config.tophat_options.G: from_conditions.

get_lt_reads()
Handles yaml_config.tophat_options.positional_args.left_reads:
from_conditions.

get_out_dir()
Handles yaml_config.tophat_options.o: from_conditions.

5.1. calls.py 21



Blacktie Documentation, Release 0.2.1.2

get_rt_reads()
Handles yaml_config.tophat_options.positional_args.right_reads:
from_conditions.

5.2 errors.py

Code defining custom base error classes to provide a foundation for graceful error handling.

exception blacktie.utils.errors.BlacktieError
Base class for exceptions in the blacktie package.

exception blacktie.utils.errors.InvalidFileFormatError
When errors occur due to malformed file formats.

exception blacktie.utils.errors.MissingArgumentError(errMsg)
When a required argument is missing from the parsed command line options.

__init__(errMsg)

exception blacktie.utils.errors.SanityCheckError
When a ‘state check’ comes back as conflicting or nonsensical.

exception blacktie.utils.errors.SystemCallError(errno, strerror, filename=None)
Error raised when a problem occurs while attempting to run an external system call.

Attributes:

errno – return code from system call
filename – file in volved if any
strerror – error msg

__init__(errno, strerror, filename=None)

exception blacktie.utils.errors.UnexpectedValueError
When values that “should” not be possible happen; like if a variable was changed unexpectedly.

5.3 externals.py

Code facilitating the execution of external system calls.

blacktie.utils.externals.mkdirp(path)
Create new dir while creating any parent dirs in the path as needed.

blacktie.utils.externals.runExternalApp(progName, argStr)
Convenience func to handle calling and monitoring output of external programs.

Parameters

• progName – name of system program command

• argStr – string containing command line options for progName

Returns subprocess.communicate object

blacktie.utils.externals.whereis(program)
returns path of program if it exists in your $PATH variable or None otherwise

22 Chapter 5. Blacktie Auto-Generated Code Documentation



Blacktie Documentation, Release 0.2.1.2

5.4 misc.py

Code facilitating random aspects of this package.

class blacktie.utils.misc.Bunch(*args, **kwds)
A dict like class to facilitate setting and access to tree-like data. Allows access to dictionary keys through ‘dot’
notation: “yourDict.key = value”.

__init__(*args, **kwds)

blacktie.utils.misc.bunchify(dict_tree)
Traverses a dictionary tree and converts all sub-dictionaries to Bunch() objects.

blacktie.utils.misc.email_notification(sender, to, subject, txt, pw, server_info)
Sends email to recipient using GMAIL server by default but will now accept server_info to customize this.

Parameters

• sender – email address of sender

• to – email addres of recipient

• subject – subject text

• txt – body text

• pw – password of sender

• server_info – dictionary = {‘host’:str,’port’:int}

Returns None

Todo

DONE make email_notification() adjustable for other email servers

blacktie.utils.misc.get_time()
Return system time formatted as ‘YYYY:MM:DD-hh:mm:ss’.

blacktie.utils.misc.get_version_number(path_to_setup)
Provides access to current version info contained in setup.py

blacktie.utils.misc.map_condition_groups(yargs)
creates a Bunch obj groups with key=’experiment_id’ from yargs, value=list(condition_queue objects with
‘experiment_id’)

Parameters yargs – argument object generated from the yaml config file

Returns groups

blacktie.utils.misc.whoami()
Returns the name of the currently active function.

5.4. misc.py 23



Blacktie Documentation, Release 0.2.1.2

24 Chapter 5. Blacktie Auto-Generated Code Documentation



CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

25



Blacktie Documentation, Release 0.2.1.2

26 Chapter 6. Indices and tables



PYTHON MODULE INDEX

b
blacktie.utils.calls, 17
blacktie.utils.errors, 22
blacktie.utils.externals, 22
blacktie.utils.misc, 22

27


	Project Summary
	I want to collaborate with you!
	Introducing Blacktie: a simpler way to do RNA-seq using Tophat, Cufflinks, and CummeRbund
	Getting the code
	Issue tracking
	Blacktie Poster

	Installation
	Requirements
	Installing the latest version from the git repository
	Use pip to obtain the package from PyPI
	Installing without using git or pip for the download
	Test to see whether the install worked

	Getting started
	The –prog option
	The –hide-logs option
	The –modes option
	The configuration file
	Using e-mail notifications

	Tutorial
	Blacktie Auto-Generated Code Documentation
	calls.py
	errors.py
	externals.py
	misc.py

	Indices and tables
	Python Module Index

